Predictions of non-Fickian solute transport in different classes of porous media using direct simulation on pore-scale images.

نویسندگان

  • Branko Bijeljic
  • Ali Raeini
  • Peyman Mostaghimi
  • Martin J Blunt
چکیده

We present predictions of transport through micro-CT images of porous media that include the analysis of correlation structure, velocity, and the dynamics of the evolving plume. We simulate solute transport through millimeter-sized three-dimensional images of a beadpack, a sandstone, and a carbonate, representing porous media with an increasing degree of pore-scale complexity. The Navier-Stokes equations are solved to compute the flow field and a streamline simulation approach is used to move particles by advection, while the random walk method is employed to represent diffusion. We show how the computed propagators (concentration as a function of displacement) for the beadpack, sandstone, and carbonate depend on the width of the velocity distribution. A narrow velocity distribution in the beadpack leads to the least anomalous behavior, where the propagators rapidly become Gaussian in shape; the wider velocity distribution in the sandstone gives rise to a small immobile concentration peak, and a large secondary mobile peak moving at approximately the average flow speed; in the carbonate with the widest velocity distribution, the stagnant concentration peak is persistent, with a slower emergence of a smaller secondary mobile peak, characteristic of highly anomalous behavior. This defines different types of transport in the three media and quantifies the effect of pore structure on transport. The propagators obtained by the model are in excellent agreement with those measured on similar cores in nuclear magnetic resonance experiments by Scheven, Verganelakis, Harris, Johns, and Gladden, Phys. Fluids 17, 117107 (2005).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Signature of non-Fickian solute transport in complex heterogeneous porous media.

We simulate transport of a solute through three-dimensional images of different rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone, and a Portland limestone. We predict the propagators (concentration as a function of distance) measured on similar cores in nuclear magnetic resonance experiments and the...

متن کامل

Investigation of pore-scale random porous media using lattice boltzmann method

The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...

متن کامل

Absolute Permeability Calculation by Direct Numerical Simulation in Porous Media

Simulating fluid flow at micro level is an ongoing problem. Simplified macroscopic flow models like Darcy’s law is unable to estimate fluid dynamic properties of porous media. The digital sample reconstruction by high resolution X-ray computed tomography scanning and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations throu...

متن کامل

Estimation of zeolite application effect on solute transport parameters at different soils using HYDRUS-1D model

ABSTRACT-Application of models for simulation of solute and pollutants transport in soil can reduce time and costs for remediation process. HYDRUS-1D model was developed to simulate the one–dimensional flow of soil water, heat, solute and viruses in variably saturated–unsaturated porous media. The objective of this investigation is to determine the solute transport parameters in disturbed soil ...

متن کامل

Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.

In the present work fluid flow and solute transport through porous media are described by solving the governing equations at the pore scale with finite-volume discretization. Instead of solving the simplified Stokes equation (very often employed in this context) the full Navier-Stokes equation is used here. The realistic three-dimensional porous medium is created in this work by packing togethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 1  شماره 

صفحات  -

تاریخ انتشار 2013